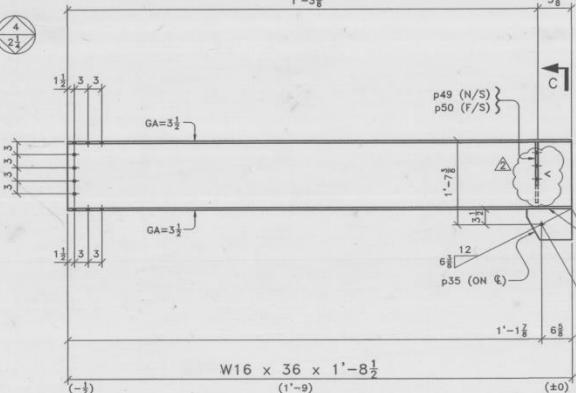
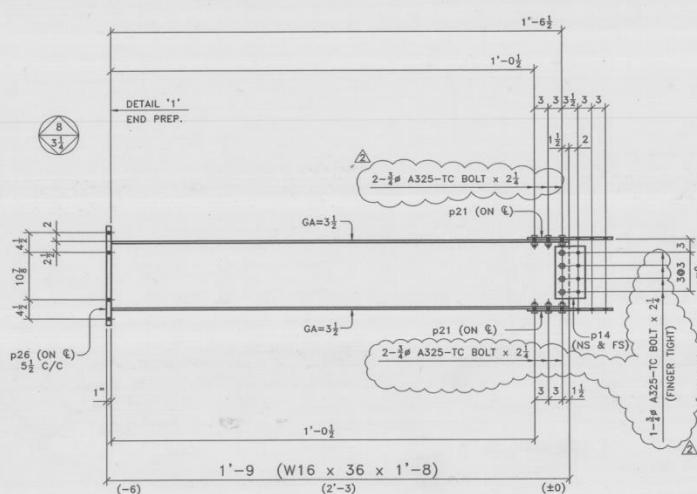
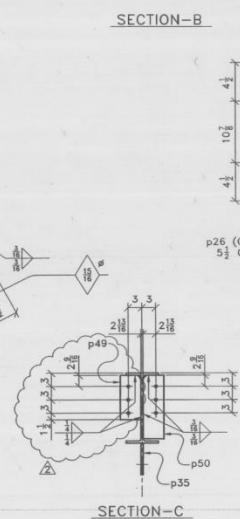


Engaging Young Minds: Hands-On Approaches to Integrated STEM in PreK-12 Education

Debbie Monson

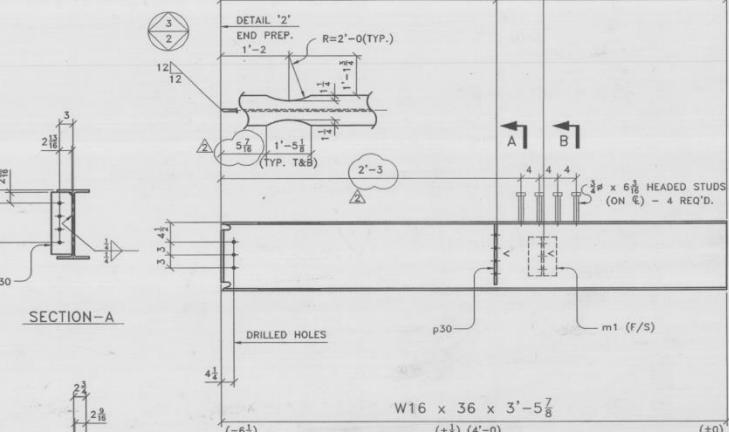
Kelsey Irizarry



Introductions


Kelsey Irizarry
Center for
Engineering Education Director
Kelsey.irizarry@stthomas.edu

Debra Monson, PhD
Department Chair,
School of Education
Debbie.monson@stthomas.edu

ONE ~ BEAM ~ B3 2 1
E1


SECTION-C

SECTION-B

DETAIL '1'
(END PREPARATION)

SHOP NOTES:

1. PAINT PIECE MARK ON LEFT END AS DETAILED.
2. ALL CORNERS TO BE SHAPED.
3. NOTE: FREE TO A RADIUS AT LEAST $\frac{1}{4}$ "
4. USE NO. 70XX WELD ROD, ALL COMPLETE JOINT PENETRATION BUTT WELDS L.H. 7018 (L.H. LOW HYDROGEN).

ONE ~ BEAM ~ C3 2 1
E1

SECTION-A

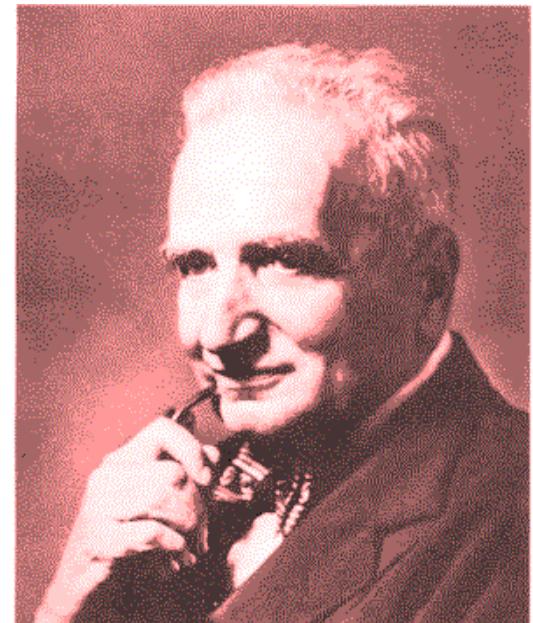
DRILLED HOLES

4 1/2

13/16 x 1 SHORT SLOTS

(-6 1/2)

m1 (F/S)


SQUARE CUT FLANGES ± 0

SQUARE CUT FLANGES ± 0

1/2" RADIUS

Engineering is...

A major difference between science and engineering is that scientists deal with the world that is, while engineers envision the world that could be.

Theodore von Kármán

Engineering Design Process

Integrated STEM – Why Teach It?

- Combining more than one subject into one learning experience.
- Teaches the 4 Cs and helps students identify as engineers.

Collaboration

Communication

Critical Thinking

Creativity

Why Integrate STEM through Engineering

- Solving a problem or need
- Using design constraints
- Competition vs. Challenge
- Why is failure important?
- As teachers, we can use low-cost materials to teach these concepts

Rocket Challenge

Step 1:

- In 3 minutes you must create a rocket that will launch as far as possible given the following materials:
- 1 straw
- 1/2 piece of paper
- 3 inches of tape
- [You may use a scissors to help you create your rocket]

Rocket Challenge

Step 2:

- As a group, we will launch our rockets. During this phase, we are also collecting data!! After all rockets have been launched, make a table that documents the distance each rocket traveled. You should also make notes about those rockets that were the most successful.

Rocket Challenge

Step 3:

- Now you have 3 minutes to redesign your rocket. Use your notes and observations to create an even better rocket. You will be given new materials (since your others were burned upon re-entry to the atmosphere).

Rocket Challenge

Step 4:

- Launch your new (and hopefully improved) rocket. Again record and graph the distance data for each rocket in the group.

What mathematics questions might you ask your students?

Rocket Challenge: The Mathematics

Integrate into Math:

- What is the mean distance traveled by the rockets during the first trial?
- What is the mean distance traveled by the rockets during the second trial?
- What is the median distance traveled by the rockets during the first trial?
- What is the median distance traveled by the rockets during the second trial?
- Does one of these measures of center (mean or median) better reflect the “average” rocket launch distance? Why?
- Make a number line plot of the data from the first trial.
- Make a number line plot of the data from the second trial.
- Make a box plot of the data from the first trial.
- Make a box plot of the data from the second trial.
- How do the box plots compare?
- How do the box plots and number line plots compare?

Engineering Design

Answer the questions on the worksheet about the engineering design process you used to create and redesign your rocket.

Reflect

- What did you learn from this challenge?
- What connections can you make to other content/concepts/challenges?

Want to Learn More?

Graduate Certificate in Engineering Education

- 4 courses (12 credits)
- Offered at a discounted price
- Funding available
- Blended model with option to Zoom
- Fall registration open

[Learn more about the program here](#)

Engineering Education Graduate Certificate

Scan the QR Code to learn more

Build STEM Skills
Ignite students' passion for STEM and help them build 21st century skills

Curriculum for All
Curriculum meets the needs of all learners with empathy, problem-solving, and real-world application

Collaborative Partner
St. Thomas professors guide you on best practices for integrating STEM into current curriculum (all content area)

Contact Details:
Kelsey Irizarry, Director
kelsey.irizarry@stthomas.edu
651-962-5508

MA in Educational Studies

- 4 core courses (Assessment, Curriculum, Equity, Technology)

Concentrations:

- Engineering
- Learning Technology
- Mathematics
- K-12 Reading
- Hispanic Culture and Language
- Special Education
- Teaching College English
- Mental Health

SCHOOL OF EDUCATION

[Learn more about this program here](#)

Thank You!

Questions?
Please contact us

Kelsey Irizarry
Kelsey.irizarry@stthomas.edu

Debra Monson, PhD
Debbie.monson@stthomas.edu